Bioavailability links mode of action can improve the long-term field risk assessment for tilapia exposed to arsenic.
نویسندگان
چکیده
The objective of this paper was to develop a mechanistic-based framework to explicitly incorporate the factors controlling the bioavailability, toxicodynamics and mode of action to enhance predictive ability of arsenic (As) toxicity to protect the health of farmed tilapia Oreochromis mossambicus. We linked the biotic ligand model and damage assessment model to develop a toxicokinetic model for elucidating the site-specific temporal changes of As bioavailability and to characterize how the fish regulate the metal toxicity. We built a bioavailability-mode of action-based growth toxicity model by linking a bioenergetic growth model and damage assessment model to predict how the As affects on the tilapia growth in the entire life span in site-specific field ecosystems. Here we show that the proposed model well describes the water-chemistry-dependent toxicokinetics and toxicodynamics variations of As to tilapia. We selected two local tilapia farms with different water chemistries located at southwestern Taiwan coast region to implement the proposed algorithm to predict the risk of As exposure. Results indicate that the growth toxicity of O. mossambicus in Taihsi is more sensitive than that in Peimen. We found that the effect of ion competition on the As bioavailability and their ecotoxicological effects on tilapia are more obvious in Taihsi comparing with that in Peimen. We suggested that the proposed bioavailability- and mode of action-based framework can be used to capture the biological response and regulation of tilapia to As exposures. It is applicable for a site-specific and long-term ecotoxicological risk assessment.
منابع مشابه
Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia.
Long-term metal exposure risk assessment for aquatic organism is a challenge because the chronic toxicity of chemical is not only determined by the amount of accumulated chemical but also affected by the ability of biological regulation or detoxification of biota. We quantified the arsenic (As) detoxification ability of tilapia and developed a biologically based growth toxicity modeling algorit...
متن کاملArsenic cancer risk posed to human health from tilapia consumption in Taiwan.
Ingested inorganic arsenic is strongly associated with a wide spectrum of adverse health outcomes. We propose a bioaccumulation and the Weibull model-based epidemiological framework to accurately estimate the reference arsenic intake guideline for tilapia consumption and tilapia-cultured water arsenic concentration based on bioaccumulations of tilapia and gender/age/cancer-specific epidemiologi...
متن کاملToxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species.
The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioa...
متن کاملToxicokinetics/toxicodynamics with damage feedback improves risk assessment for tilapia and freshwater clam exposed to arsenic.
It has been proposed that irreversible responses of organisms exposed to contaminants are due to a systems-level feedback. Here we tested this hypothesis by reanalyzing the published data on toxicokinetics and survival probability based on a systems-level threshold damage model (TDM) incorporating with a positive damage feedback to explore the steady-state response and dynamic behavior of damag...
متن کاملA biotic ligand model-based toxicodynamic approach to predict arsenic toxicity to tilapia gills in cultural ponds.
Farming of tilapia Oreochromis mossambicus is an important aquacultural activity in Taiwan. Due to the elevated arsenic (As) concentration in pond water, it is important to assess the bioavailability and toxicity of As to tilapia for protection of aquatic life and human health. In the present study, we developed a biotic ligand model (BLM)-based toxicodynamic approach to dynamically predict bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environment international
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2009